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ABSTRACT 

A p-Helson set is defined to be a closed subset E of the circle group Twith the 
property that every continuous function on E can be extended to the full circle 
in such a way that this extension has its sequence of Fourier coefficients in I p. 
For 1 < p < 2, the union of two such sets is again ap-Helson set. It is shown 
that the p-Helson sets (p > 1) differ from the Helson sets and also that the 
notion really depends on the index p. An analogue of H. Helson's result is 
given: a p-Helson set supports no nonzero measure with Fourier-Stieltjes 
transform in I q, lip q- 1/q = 1. 

1. Introduction 

A closed subset E of the circle group T is called a Helson set if every continuous 

function on E is the restriction to E of a function with an absolutely convergent 

Fourier series. I f  M ( E )  denotes the space of complex Borel measures carried by E, 

this is equivalent to the existence of a positive constant ~ such that 

here 1] # I[M = 1# ](T) is the total variation norm of the measure li, and ][/i l[ ~o is the 

l~176 of the Fourier-Stieltjes transform of #. Condition (1) makes it plain why 

the Helson sets are thought of  as the continuous analogues of  the Sidon sets. 

In [8], Rudin introduced a generalization of the Sidon sets, called A(p)-sets, or 

p-Sidon sets. In this paper, we will investigate one possible dualization of these 

p-Sidon sets. More precisely, if  1 __< p __< 2, let AP(T)  stand for the space of con- 

tinuous complex functions on T whose sequence of Fourier coefficients lie in IP; 

if every continuous function on E is the restriction to E of a function in AP(T) ,  

then we will say that E is a p-Helson set. When p = 1, we have the usual Helson 
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sets, whereas when p = 2, every closed set satisfies the requirement since every 

continuous function on T has a square summable sequence of Fourier coefficients. 

We will therefore confine our attention to the case in which 1 < p < 2. 

Here is an outline of the results. We first give the appropriate analogue of the 

condition (1) for p-Helson sets. Using it, we prove that a p-Helson set cannot 

carry a nonzero measure whose Fourier-Stieltjes transform belongs to l ~, where 

q = p/(p - 1). With a bit more work, we find a characterization of p-Helson which 

involves the sets of zero measure with respect to a certain subspace of M(T). 
Finally, we use our necessary and sufficient condition to give examples of p-Helson 

sets that are not Helson sets, and examples of p2-Helson sets that are not pl-Helson 

sets, where 1 < Pl < Pz < 2. 

2. A p (I?) and its dual 

We norm the space AP(T) by 

(2) Ilsll = max~:llslloo, Ilfll,,) 
It is easy to see that AP(T) is then a Banach space. We need to find the dual space 

of AP(T) under this norm. To do this, observe that under the sup-norm 

AP(T) is dense in C(T), and that under the/P-norm A. r)is dense in I p. 

Therefore, the duals of AP(T) with respect to these two norms are M(T) and I q, 

respectively. One can then see that the dual of AP(T) under the norm (2) can be 

identified with the product M(T) x l q, factored by the subspace N of all pairs 

(/~,/1) with # ~ Mq(T), where M~(T) is the set of all # in M(T) with/~ in IL That is 

to say, if A is a continuous linear functional on AP(T), then there exist # in M(T) 

and S = (d,} + ~ in 1 q with 

A f =  f d l ~ -  2 f (n) .d .  (IeAP(T)) 
- -  c .5  

and 

[IAH = inf{l[ # -  211M+ H S -  ~ [[tq: 2 EM~(T)}. 

We will abbreviate this last infimum by [17 ,s 111, and if S = 0, we will write 

Ill,Ill, instead of [llm,0)l[ I 
We can interpret the collection of restrictions of the functions in AP(T) to a 

fixed closed set E as a quotient space of AP(T) in the usual way. If  we let I~ be the 

set of all functions in AP(T) which vanish on E, then the quotient of AP(T) by 
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1~, which we denote by AP(E), is naturally isomorphic to this set of restrictions. 

Hence, E is a p-Helson set if and only if AP(E) = C(E). 

We can now give the promised analogue of (1). 

THEOREM 1. Let E be a closed subset of T, and 1 <_6 P <= 2. E is a p-Helson 

set i f  and only if  there is a positive number t5 such that for each # ~M(E),  

(3) II. I1~, ~ ~ ltl.lll. 
PROOF. The linear map S: AP(E) ~ C(E) defined by S([f])  = f i e  is well-defined, 

one-to-one and continuous. Clearly, E is a p-Helson set if and only if S is onto 

C(E). By a classical theorem [5, p. 141], S is onto provided its adjoint S* has a 

continuous inverse. Now, the adjoint S*: M(E) ...* AP(E) * is given by S*# = (/l, 0) 

for every # in M(E). Therefore, (3) is seen to be the statement that S* has a con- 

tinuous inverse. Conversely, if AP(E) = C(E), then the adjoint S* is onto AP(E) *, 

is one-to-one and continuous. Thus, by the Open Mapping Theorem, there is a 

> 0 for which (3) holds. [] 

3. Measures carried by p-Helson sets 

From now on, we will take p with 1 < p < 2, and let q be its conjugate exponent, 

q = p/(p - 1). We want to investigate the consequences of the following condition 

on a closed set E" There is a positive constant 6 such that 

~4) II. itM <--- ~ tl ~ I1,~ <~ ~ M : ) ) ,  
where Me(E ) = Me(T) c3 M(E). This condition must be satisfied if E is p-Helson, 

because of Theorem 1 and the simple fact that [1[. III z I1: I1,~, if ~ ~ Me(T). We 

will show that (4) cannot hold for any set E unless Mr(E ) is zero. 

Let E be a closed subset of T and 2 < q < oo. I f  Mq(E) is nonzero, THEOREM 2. 

then 

sup ~II:H,." " -- 

For the proof, we need the following lemmas, the first of which is proved in 

I-5, p. 143]. 

LEMMA 1. Let c l , . . . , c  k be given complex numbers, and consider the 

random variable 

+ci_+... +ok-  
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where the + 's are chosen randomly, each with probability �89 and independently 
of one another. I fE  denotes the expected value, then 

~(J_+c, _+..._+ckl)_>- l_(ic, j2+...+lckl2)~ 
,/3 

LEMMA 2. Let ~ be in Mq(T), 2 < q < o o .  To each k=2 ,3 ,4 , . . . ,  there 
corresponds a positive integer N such that whenever nl ..... n k are integers which 
satisfy [n i -n j [  > 2 N  when i v~j, then for every choice of +_, the Fourier- 
Stieltjes transform of the measure 

dTk(t )  = (j=~l +e'"~t ) dT(t) 

satisfies [I 9kll,q =<c" k"s " [I p ll,o, where c = 2. 

PROOF. Let 7 e Mq(T), and k be given. Choose N so large that 

(5) (,,,5~ 19(n)l~) l's=< k"s-'!lPll'q 
Let the integers nl .... , nk be given with In, - ni l  > 2N, if i # j .  Put 

d,~ (.=~_ '(n) e'"t)d t 

and d~' = d7 - d7 ~ Then 

dTk(t) = (j=~ q- e 'n:t )d,~ + C~ ' +_e ~./t )dy'(t) 

= dT~ + dy'g(t). 

Because of the gaps between the integers nl . . . . .  nk, every Fourier-Stieltjes coef- 

ficient of d7 ~ is a coefficient of d7 ~ (up to sign) and each coefficient of d7 ~ appears 
0 +co (up to sign) precisely k times in the sequence (~k(n)},=_co. Therefore 

I[ 7~ ' =<- k~/'ll 9 0 [1"" On the other hand 

I1 ~ ll,, --< kll ~'ll,q S k"S[I ~11,~, 
by (5). The conclusion follows. [] 

PROOF OF THEOREM 2. Pick # # 0 from Ms(E). We will exhibit a sequence 
co { k}k=2 of (non-zero) measures in Ms(E ) for which 

(6) II v~ I1~ >-e. k ~" II g IIM, 

and 
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(7) [I ll,q e '  II I1,,, 
where the constants c, c' are independent of k. 

So let an integer k > 2 be given. Apply Lemma 2 to the measure # to find an 

integer N so that the conclusion of that lemma holds. Choose integers n 1 .. . . .  nk in 

such a way that ] n~ - n i ] > 2N if i ~ j .  Then, for every choice of _+, the Fourier- 

Stieltjes transform of the random measure 

dvk(t) = (j=~-k-einJt)d~(t) 

satisfies (7). By Lemma 1, the expected value of the total variation of Vk is 

= f E (I +- e'n:+--"'" +- e"k'l)dl l(t) 

___ 1 "k*'ll [lM 

Therefore, there is at least one choice of + for which (6) holds, with c = 1/x/3. 

Since (7) holds for all choices, we are done. [] 

As we pointed out at the beginning of this section, Theorem 2 has the following 

corollary, which we may consider as the analogue of Helson's Theorem: If  E is a 

Helson set and if # ~ M(E) has/~(n) ~ 0 as [ n I ~ oo, then # = 0 I3]. 

COROLLARY. I f  E is a p-Helson set, and 1 < p < 2, then 

Mq(E) = {0}, where q = p/(p - 1). 

4. Necessary and sufficient conditions 

It is easy to see that Ill#Ill = I!/z II~ provided every 2 in M~(T) satisfies ]21(E ) 

= 0. Thus, Theorem 1 shows that E is a p-Helson set whenever each 2 in Mq(T) 

has none of its mass on E. This turns out to be a necessary condition also. To see 

why, we first prove an extension of the corollary to Theorem 2. 

THEOREM 3. I f  E is p-Helson, where 1 < p < 2, then M~(T) N M(E) = {0}, 

the closure taking place in the total variation norm of M(T).  

Note that Theorem 3 would follow from the corollary if it were true that the 

restriction of an M:measure  to a closed set was still an M(measure. Nevertheless, 
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we can establish Theorem 3 using an argument similar to the one in the proof of 

Theorem 2, together with the following lemma. 

LEMMA 3. Let # in Mo(T)={#~M(T):#~Co} be given. To each k 

= 2, 3,4, ..., there corresponds an integer M > 0 such that whenever nt, ..., n k are 

integers which satisfy I ni - n11 > M for i ~ j, then for every choice of +-, the 
total variation of the measure 

dl~k(t) = (j~=l q- eln~t )dp(t) 

satisfies I1 ~ I1~--< n k~. Ii ~ IIM, where B = x/-2. 

PROOF. Let # in Mo(T) be given and fix k e  {2,3,4,...}. Find M so large that 

if I m l > M, then 

I1~1;, 
(8) II~l(m)l = k(k- 1) 

This can be done because /~ ~ Mo(T ) if and only if ] # [ E Mo(T ). Now assume 

n~, . . . ,  nk are integers with I n, - n i l  > M when i C j .  The convexity of t2(t > O) 

and Jensen's inequality [10, p. 61] show that the square of the total variation of 

~k is no larger than the total variation of # times 

k 

f (j~=l "t-e'nJt)(,~1-----e-inPt) d]#l (t) 

k 

= k.  I [ ,b ,  + z +_ I ~ l ( n , -  nj) 
j , p  = 1 

j ~ p  

_< k. ][~IIM+ II~IIM; 
This last inequality is true because of (8). Hence, 

and the lemma follows. [] 

PROOF OF THEOREM 3. Assume that Mq(T)n M(E) is nonzero; say # r 0 is 

in M(E) and measures 7k ~ Mq(T) can be found with II ~ - ~ I1,, -~ 0 as k ~ oo. It 

is easy to see that we may assume the Fourier-Stieltjes transforms Pk satisfy 
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because q > 2. To show that E is not a p-Helson set, we will exhibit a sequence of 

nonzero measures /~k in M(E) for which IIl~klll/ll~llM~0 as k - ~ ,  and then 

appeal to Theorem 1. 

First observe that the measure/~ has/~ ~ Co; this follows from the fact that each 

Yk is in Mq(T) c Mo(T ) and II ~ - ~ I1,~ --- I1~ - ~ IIM. Hence, # - Vk is in Mo(T), 

for all k. Let k e {2, 3,4, ... } be fixed. By Lemma 3 (applied to the measure 

# -  Vk), there is an M > 0 such that whenever nl,'",nk are integers with 

[ ni - nj [ > M for i # j,  then the total variation of 

dVk(t) = (j=~ + e"Jt )d(# -- Tk)(t) 

satisfies 

(9) 
for every choice of _ .  By Lemma 2 (applied to ~k), there is an N > 0 such that 

whenever nl, ...,nk are integers with In,- nil> 2N for i ~ j ,  then the Fourier- 

Stieltjes transform of the measure 

satisfies 

(10) 

for every choice of _ .  

dpk(t) = (j=~ +_ e"~t)d~k(t) 

Therefore, if we choose integers nl,...,n k so that [ n , - n j ]  > 2max{M,N} 

for i # j ,  then both (9) and (10) will hold for every choice of + .  Let the integers 

n l , . . . , n  k be determined by such a choice. 

By Lemma 1, if Pk in M(E) is the random measure 

dltk(t) = (j=~l q- e'n~t )d#(t) 

then, as in the proof of Theorem 2, we have 

x/g 

Therefore, there is at least one choice of + for which 

o1)  II~ll~, >-- 1 . k~, II~llM 
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holds. Let the measures Irk, Pk (and hence Vk) be determined by such a choice of  _+. 

Then, because (9), (10) and (11) hold, we have 

Ill Irk Ill < II It~ - p~ II~ II ~ I1,, I1~ I1~, II ~, I1,, 
i-~-~ I~ + - - - -  + lilt, If,, = 111t, ll~, ~ II It~ll~, 

- 4 ~ . c -  k"q-~ll ~ II,, 
IIItll~ Ilitll~ ' 

and both of  these quantities tend to zero as k ~ oo. Therefore, by Theorem 1, E 

is not a p-Helson set. [ ]  

We now gather our equivalences for a p-Helson set: 

THEOREM 4. Let E be a closed subset o fT ,  l < p < 2 ,  q = p / ( p - 1 ) .  The 

following are equivalent: 

(a) E is a p-Helson set; 

(b) there is a 6 > 0 such that II It IIM--- ~ IIlit IIl,f~ all ItEM(E); 

(c) Ms(T ) C~ M(E) = {0} ; 

(d) I~[(E) = O, for every T~Mq(T); 

(e) IIlitl[l = I l i t b , , f  or every IteM(E). 

PROOF. Theorem 1 established the equivalence of (a) and (b). Theorem 3 

showed that (b) implies (c). Since the implications (d) ~ (e) --* (b) are both evident, 

it only remains to be shown that ( c ) ~  (d). Suppose that Irl(E)> 0 for some 

r ~ Ms(T), and put drk = fkd~, wherefk ~ A(T), 0 <=fk < l,fk = 1 on E andfk ~ Z~, 

pointwise almost everywhere with respect to [ ~]; this can be done because A(T) 

is a normal family of functions on T [4, p. 341]. Hence, 

This shows that the measure zed? belongs to the closure of Mq(T); since it is 

nonzero and carried by the set E, we are done. [] 

COROLLARY. If Ej, E2,"" are p-Helson sets, 1 < p < 2, then so is their union, 

provided it is closed. In particular, the union of two p-Helson sets is again a 

p-Helson set. 

PROOF. If ~ ~ Me(T ), then l T l annihilates each En, so it annihilates the union. 

By (d) of Theorem 4, the union is p-Helson. []  

Before proceeding with some examples, we want to point out a few other simple 

consequences of Theorem 4. First, (d) shows that p-Helson sets (1 < p < 2) have 

zero Lebesgue measure. This fact seems to have been known; it appears as an 
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exercise in one of the standard works on trigonometric series [1, p. 359]. It also 

shows that not all closed sets of measure zero are p-Helson, for Kahane and 

Salem [5, p. 106] construct a perfect set of Hausdorff dimension ~ where 

2/q < e < 1, which supports a nonzero measure from Mq(T). Finally, we remark 

that Varopoulos [12] has recently established that the Corollary of Theorem 4 

is also true when p = 1. 

5. Some examples 

By Theorem 4(d), a closed set E is p-Helson if and only if each ;L in Ma(T) has 

none of its mass on E. The simplest class of sets with this property are the Uo-sets, 

that is to say, the closed sets E such that no nonzero measure carried by E has 

its Fourier-Stieltjes transform vanishing at infinity. For  example, every countable 

set is Uo, since a measure # with/~ ~ Co must be continuous: p({x}) = 0 for each x. 

[9, p. 118]. To see that Uo-sets are p-Helson (p > 1), we need the following lemma. 

LEMMA 4. I f  I~eMo(T ) then h # s M o ( T  ) for any bounded measurable 

function h, since h is the limit of trigonometric polynomials in D(I I). 
THEOREM 5. I f  the closed set E is a Uo-set, then E is a p-Helson set, for 

every p > 1. 

PROOF. If  t e Mq(T), 2 < q < 0% then zed2 is in Mo(T), by the lemma. Since 

xEd;~ is carried by the Uo-set E, it must be the zero measure, that is, [ 21 (E) = 0. []  

We point out that Uo-sets need not be Helson sets. In fact, there are plenty of 

countable sets that are not Helson sets; see [-6, p. 32] for a very general construction. 

COROLLARY. I f  E is a symmetrical perfect set with constant ratio 4, with 1/4 a 

Pisot number, then E is a p-Helson set for every p > 1;furthermore, no such set 

is a Helson set. 

This is true because Salem and Zygmund have shown, see [5, p. 74], that such 

a set is Uo. A theorem of  Kahane and Salem, see [6, p. 32] shows that no sym- 

metrical set (constant ratio or not) can be a Helson set. We point out that there 

do exist perfect symmetrical sets with variable ratios which are Uo-sets, and 

hence p-Helson, p > 1. 

We now want to show that there are sets E which are not Uo, but which are 

still p-Helson for every p > 1. This will be obtained as a corollary of  the following 

theorem. 

THEOREM 6. Let E be a closed set such that the m-fold sum E + ... + E has 
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Lebesgue measure zero. Then E is a p-Helson set for every p > 1 whose conjugate 

exponent q satisfies q < 2m, that is, for any p > 2m /2m - 1. 

PROOF. Let ~ E Mq(T), where q < 2m. Let v = xEdv, and consider the m-fold 

convolution v " =  v * . . . .  v. Since v is carried by E, v" is carried by the m-fold 

sum E + ... + E, and hence is singular, by the hypothesis. 

We claim that v m is also absolutely continuous. To see this, first observe that 

the m-fold convolution 7 " =  V . . . . ,  ? has a square-summable Fourier-Stieltjes 

transform, since 2m > q. Consequently, V" is absolutely continuous. Now the 

measure v need not belong to M~(T), but it does belong to Mq(T), the closure in 

total variation norm. To see this, we can use an argument similar to that in the 

proof  of Theorem 4: approximate XE pointwise boundedly by a sequence of 

functions 9. ~ A(T), and observe that the measures g.d~, (which are still in Mq(T)) 
converge in total variation to )~EdT. Now it is a simple matter to show that because 

xnd7 belongs to M~(T), its m-fold convolution power must be absolutely con- 

tinuous, since if measures v. converge to v (in variation), then the m-fold con- 

volutions v." converge to v" (in variation). Thus, v" is absolutely continuous. 

Therefore, v" must be the zero measure. But v" cannot be the zero measure 

unless dv = xEdY is the zero measure. Consequently, l el(E) --- 0 and the proof  is 

complete. []  

COROLLARY 1. A closed independent set E is p-Helson for every p > 1. 

PROOF. By an independent set we mean the following: If xl ,  " ' ,  x, are distinct 

points of E, and nl, ..., n k are integers with nix 1 + ... + nkX k = 0, then nx . . . .  

= n k = 0. To prove the corollary, it suffices to show that the Lebesgue measure 

of E + ... + E (any number of summands) is zero. In fact, it is an easy exercise to 

show, using the fact that proper measurable subgroups of T have measure zero 

[-7, p. 8], that Gp(E), the subgroup of T generated by E, has measure zero. For  

an even stronger result, see [-2]. 

To complete the proof, observe that the hypothesis of Theorem 6 is satisfied 

for every positive integer m. []  

We can now see that the converse of Theorem 5 is not true; it is well known 

that there exist perfect independent sets E with Mo(E) ~ {0}; see [5, p. 106]. 

As our final class of examples, we take certain symmetrical perfect sets with 

variable ratios; for a description, see [5, ch. 1]. 

COROLLARY 2. I f  E = E(~k)  is the symmetrical perfect set with variable ratios 
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~k, and lim infk_~oo 2"k~X "'" ~k = O, for some positive integer m, then E is a p-Helson 

set for every p > 2m/2m - 1. 

It is an easy matter to see that the Lebesgue measure of E + . . .  + E (m sum- 

mands) is no larger than 

m �9 liminf2"k~l ... ~k; 
k"* oo 

hence Theorem 6 applies. 

COROLLARY 3. I f  E = E(~k) and ~k ~ O, then E is p-Helson for every p > 1. 

Indeed, the hypothesis of Corollary 2 is satisfied for every positive integer m. 

Corollary 3 furnishes further examples of p-Helson sets for every p > 1 which 

are not Uo-sets, because a theorem of Kahane and Salem [5, p. 103] shows that 

there are many symmetrical perfect sets E with ratios tending to zero such that 

Mo(E) {0}. 

6. Dependence onp 

We finally point out that the notion of a p-Helson set really does depend on p. 

We will use a theorem of R. Salem, together with our results. 

THEOREM (Salem, [11]). Consider all the symmetrical perfect sets E = E(~k) 

for which a k < ~k < bk, where 0 < a k < bk < �89 and where the sequences (ak}, 

{bk} satisfy the following: 

(i) b~ - a k > 1/o~(k), where o~(k) is a positive nondecreasin9 sequence such 

that loga)(k) = o(k) as k ~  oo; 

(ii) lim infk_.oo (a 1 ... ak) 1/k = ~ > O; 

then, there is a constant qo, depending only on ~, such that for every q > qo, the 

series 

+oo 

--00 

converoes for almost all sets E, where ~(n) is the nth Fourier-Stieltjes coef- 

ficient of the L-measure p carried by E. 

Let us fix an integer m __> 2, and choose the sequences {ak} and {bk} in Salem's 

Theorem as follows: 

ak = (�88 bk = (�89 for all k. 

Then conditions (i) and (ii) of the theorem are satisfied. Therefore, almost all the 

sets E have Mg,(E) ~ {0} for qx > qo. Consequently, almost all the sets E are not 
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pl-Helson for Pl with 1 < pl < qo/(qo - 1), by Theorem 4. On the other hand, 

Corollary 2 of Theorem 6 shows that every set E admitted in Salem's Theorem 

is a p2-Helson set, where P2 > 2 m / ( 2 m -  1), because, for any E = E(~k), the  

measure of the m-fold sum E + ... + E is no larger than 

lim inf 2'nkbl ''" b k = O. 
k--* oo 

We should remark that we have not proved that given arbitrary pl,  P2 with 

1 < px < P2 < 2, there exists a p2-Helson set which is not a p~-Helson set. 

However, if we take the integer m (in our application of Salem's theorem above) 

to be very large, we do make P2 -- Pl arbitrarily small, although then both pl, P2 

will be very close to 1. 

7. Some questions 

We have not been able to determine whether Mq(E) = {0} implies E is p-Helson. 

This is probably false, because the restriction of an M e measure to a closed set 

does not seem to be an Mq-measure. 

Also, one can replace the space AP(T) by the subspace of "analytic" functions 

in AP(T), that is, let A~(T) be the collection of all functions in AP(T) whose 

negative Fourier coefficients vanish. Define AP+(E) in the usual way, and call a 

closed set E c T a p-Carleson set if AP+(E) = C(E). Wik [-13] showed that the 

Carleson sets (i.e., our 1-Carleson sets) are no different than the Helson sets. We 

have been unable to verify this when 1 < p < 2, although it is easily seen to be 

false when p = 2: a 2-Carleson set must have Lebesgue measure zero, whereas 

every closed set is 2-Helson. On the other hand, all of our theorems concerning 

p-Helson sets have valid analogues for p-Carleson sets. In particular, every example 

of a p-Helson set that we have given, can also be shown to be a p-Carleson set, 

and Salem's theorem can again be used to see that p-Carleson does depend on p. 
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